LearnCV.ai

Teaching AI visually and practically!


Project maintained by purus15987 Hosted on GitHub Pages — Theme by mattgraham

Syllabus: Computer Vision Course (2025)

Welcome to the Computer Vision course! This syllabus outlines the lecture plan, core units, sub-topics, practical tasks, reference materials, and outcomes you’ll cover throughout the semester.


🧭 Orientation

Lec Topic Description Tasks / Assignments
0 Introduction Course Overview & Project Allotments 35+ Projects in 10 Categories

🧱 Unit 0: Programming Prerequisites

Day Topic Sub-Topics Tasks
1 Math Foundation Linear Algebra, Prob & Stats, Geometry, Optimization, Calculus, Discrete Math, Signal Proc Task 1: Jupyter Notebook on Math
2 Python Basics Variables, Data Types, Loops, OOP, Modules, File I/O, Error Handling Task 2: Summarize Python Course
3 NumPy Array Ops, Shape Manipulation, Math Ops Task 3: Selfie Image Processing
4 Matplotlib Plotting Basics, Figures, Styling Task 4: Implement Plotting Functions
5 OpenCV (cv2) Basic Image/Video Ops, Transformations Task 5: Video Processing with OpenCV
6 Scikit-image / Pillow Image Transformations, Format Handling Task 6: Pillow + OpenCV Use Cases
7 Flask / Django / FastAPI Upload Images, API Calls, Video Streaming Task 7: Deploy an API Model

🖼️ Unit 1: Image Processing Foundations

Day Topic Sub-Topics Tasks
7 Image Acquisition Digital vs Analog, Cameras, CMOS vs CCD Task 8-9: Sampling Theorem, Visualize Signal
8 Image Representation Pixels, Color Spaces, Bits Per Pixel Tasks 10–14: Color Space, Resolution, Size
9 Basic Image Ops Color Conversion, Geometric Transforms, Bitwise Ops Tasks 15–18: Draw Shapes, Transforms
10 Filtering Techniques Convolutions, Morphology, Spatial/Non-Linear Filters Tasks 19–24: Filters, Interpolation
11 Image Restoration Degradation, Inverse Filtering, Wiener Filtering Task 25: Noise Removal
12 Image Enhancement Histogram Equalization, Intensity Transforms, Sharpening Task 26–27: Enhance Details
13 Image Compression JPEG, PNG, Lossy vs Lossless Compression Task 28: Compress + Compare
14 Image Analysis Edge Detection, Multi-Resolution Pyramids Task 29–30: Sobel, Laplacian, Pyramids

⚙️ Unit 2: Advanced Image Processing

Day Topic Sub-Topics Tasks
15 Thresholding Techniques Global, Adaptive, Otsu Task 31
16 Edge Detection Sobel, Prewitt, Laplacian, Canny Task 32
17 Corner Detection Harris, Shi-Tomasi, FAST, ORB Task 33
18 Texture Analysis GLCM, LBP Task 34
19 Shape Analysis Contours, Skeletons, Hu Moments Task 35
20 Segmentation Watershed, Region Growing, K-means Task 36
21 Boundary Pattern Analysis Chain Code, Polygon Approximation Task 37
22 Line Detection Hough Transform, RANSAC Task 38
23 Circle / Ellipse Detection Hough Circle Detection Task 39
24 The Hough Transform Line, Circle, GHT Task 40
25 Pattern Matching Template Matching, NCC, Feature Matching Task 41

🧱 Unit 3: 3D Vision & Motion

Day Topic Sub-Topics Tasks
26 The 3D World Pinhole Model, Image vs World Coordinates Task 42
27 Image Transforms Homography, Intrinsic/Extrinsic Params Task 43
28 3D Reconstruction Stereo Vision, Depth Maps Task 44
29 Introduction to Motion Optical Flow, KLT Tracker Task 45
30 Kalman Filter Tracking and Prediction Task 46

🧠 Unit 4: Real-Time Pattern Recognition Systems

Day Topic Sub-Topics Tasks
31 Automated Visual Inspection Defect Detection, Template Matching Task 47
32 Surveillance Systems Motion Detection, Object Tracking Task 48
33 In-Vehicle Vision Lane Detection, Drowsiness Detection Task 49
34 Statistical Pattern Recog. Bayes Classifier, k-NN, Decision Trees Task 50
35 Project Review + Viva Mini Projects, Peer Assessment Presentation + Evaluation

📚 Reference Books

ID Title Author(s)
T1 Computer Vision: Algorithms & Applications Richard Szeliski
T2 Computer & Machine Vision E.R. Davies
T3 Feature Extraction & Image Processing Mark Nixon, A. Aquado
T4 Linear Algebra and its Applications Gilbert Strang
T5 Probability & Statistics for Engineers and Scientists Sheldon M. Ross
T6 Operations Research: Theory and Applications J.K. Sharma
T7 Digital Signal Processing Proakis, Manolakis
T8 Discrete Mathematics Seymour Lipschutz, Marc Lipson
T9 Python Documentation Python.org
T10 NumPy Documentation numpy.org
T11 Matplotlib Tutorials matplotlib.org
T12 OpenCV Documentation opencv.org
T13 Scikit-Image Docs scikit-image.org
T14 Pillow Docs python-pillow.org
T15 Flask Documentation flask.palletsprojects.com
T16 Mathematics for Machine Learning Deisenroth et al.
T17 Data Science & ML (Mathematical + Statistical Methods) Kroese et al.
T18 Machine Learning: A Probabilistic Perspective Kevin P. Murphy
T19 Machine Learning: An Algorithmic Perspective Stephen Marsland

📬 For questions, assignments, and announcements: Check the Course GitHub Discussions

🧑‍🏫 Instructor: Purushotham MailapalliGitHub LinkedIn